
national accelerator laboratory 

NAL-THY-75 

August 1972 

Finite-Energy Sum Rule for Inclusive Reactions II 

A.I. SANDA 
National Accelerator Laboratory, Batavia, Illinois 60510 

ABSTRACT 

The finite-energy sum rule for inclusive reaction with fixed s and t 

was previously shown to be consistent with experimental data. In the 

present paper, we discuss fixed GIL/s and t sum rules. The data 

obtained from resonance search experiments using Jacobian peak 

method is particularly suited for testing the sum rule. 
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I INTRODUCTION 

By now it is well known that an inclusive reaction cross section 

for a + b - c + X,(X stands for all possible unobserved states.) is related 

to the absorptive part of a scattering amplitude for a + b + c - a + b + c 

when the latter is analytically continued to the proper kinematical region. 

In this paper, we will call this a consequence of generalized unitarity. 

In a previous paper, 
1 

we pointed out that the analyticity of the scattering 

amplitude for a + b + s - a + b + c allowed us to write a finite-energy sum 

rule for inclusive reactions. (This result has also been discussed by 

Ref. 2.) 
-a 

2 
where s is fixed and MO < < s. 

The momenta are defined in Fig. 1, 

p+ (pa+ &yq)” ) s = (fk+Y , *= +-%); 

Ivl -== (+“p 

i, j, k are Regge trajectories shown in Fig. 2 and cri(t), ej(t) andak(0) are 

their trajectory functions. TV. ‘j, and ~~ are signatures of the trajectories 

i, j, and k respectively. Gijk(t) are triple-Regge residue functions for the 

Reggeons i, j and k.n is a positive integer. Eq. (1) is nothing but a consequence 
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of the Cauchy’s theorem if the scattering amplitude T(s, t, M2) satisfies 

following conditions. (a) T(s, t, M2) has the triple-Regge behavior 

t 
Sjk 

+, T (d,[O)- ‘i I$) -“‘j ltl) 
(2) 

(b) When s is large,t < 0 and both are fixed, T(s, t, M2) is analytic in M2 

everywhere except along the real axis, where the generalized unitarity 

requires T(s,t, M2) to have singularities. The discontinuity across the 

cut is related to the inclusive cross section for a + b+ c + X. 

Phenomenologically, we have verified that the data p + p + p + X 

taken at BNL and n; p -f p + X taken at Serpukov are consistent with only 

two triple-Regge terms3 GPpf and GffP. Furthermore, we have verified 

that the values obtained for the triple-Regge residue functions are consistent 

with Eq. ( 1) for both sets of data. 
4 

With this initial success we may ask whether there are other 

results which may follow from the analyticity of T(s. t, M’). In this paper 

we concentrate our efforts on writing a finite-energy sum rule with a much 

larger contour. That is to say we relax the condition M2 < Mi<< s and 

consider the case M2/s finite and fixed. 
5 

We suppose that 
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(a) T(M’/s, t, M’) for fixed M’/s and t has the Regge behavior in the 

fragmentation region. The precise Regge behavior required will be 

given below. (b) T(M 
2 

/s, t, M 
2 

), for fixed M’/s and t, is analytic in M 
2 

except for the unitarity cut. 

These assumptions will enable us to derive a sum rule which 

relates the integral of the inclusive cross section over the missing 

mass M 2 (with M 
2 

/s ,and t fixed) to the residue functions g k (M’/s, t). 

We stress that the analyticity assumption for T(M2/s, t, M2) is by no 

means trivial. In Ref. 1 we gave an example of a diagram in the c++~ theory 

which produces complex cuts in the region of our consideration. We will, 

for now, take the view point that these complex cuts contribute very little 

to the sum rule. 

II FIXED M2/s, t SUM RULE 

In Section II of Ref. 1 we have given a discussion which shows that 

the absorptive part of T(s, t, M2) when taken properly is indeed the cross 

section for a + b- c + X. It was important to state exactly how we take 

the absorptive part. To restate the procedure, let us for the moment, 

consider a non-forward scattering amplitude shown in Fig. 3. Define 

s =cp.+pcy ) s’= cp:. I;,“, t= q&-f)=, t’= ‘fz’-g’)= 

bi:- (pa- p&g’, PA2 = rp+ p --%I’ * 
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(For the rest of the variables we refer the reader to Ref. 1) Then 

J-I S= s,+iG,, s’= s,-ie,, + , M2= M:+ ;e,) 

_ T (s=Sot;&, , S’= Spies , ’ 1 M*= Mt- 
(3) 

where E 1’. e2, 3 
E > 0. The order of limits in Eq. (3) is important to 

assure that discontinuities due to other channels are absent, Keeping 

s=s +ie small but finite, we can 
0 1’ 

s’ = so - i l 2 fixed, cl, .e2 

isolate a M2 plane on which there are right and left hand cuts. The 

left hand cut corresponds to the Mf channel. (Note that Mf = 2t + 2m2- M2) 

The absorptive part for these two channels are shown in Fig. 4. 

So far we considered the case of fixed s >> Mi and t < 0. We now 

consider the problem of writing a finite-energy sum rule where the cut off 

in the M2 integral becomes the same order as s with t fixed. This is the 

fragmentation region of particle a. We start by defining the variables which 

treat both channels shown in Fig. 4 symmetrically. 
2 

‘2= 2 p&p-+$) ) 1’: v;qi-fJ 

v= 2pb. q++-%) = 2pl+Lf) . 
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They are r,elated to previously defined variables. 

5s 4?),,‘+4n;: + fC7+v) ) s’= onh+q 
= ? Lo) 

M*s /w\$+t+rl 

PI: = rn$+O -Y 
-2 
ti =v (5) 

The M2 and M: channel singularities 

on the Y plane is shown in Fig. 5. We have also drawn the contours used 

to obtain the finite-energy sum rule. It will be seen below that the Regge 

expansion for the fragmentation region involves a residue functions which 

depends on M2/s or equivalently v/q. Thus we are forced to keep the 

variable fixed throughout the contour of integration. For complex V, we 

must yet specify how they are fixed. For example there are at least two 

choices vlnfixed or v/n” fixed. As the phase of v changes, the phase of n 

changes differently in two cases. However, in order to avoid going into the 

second sheet on both n and n’ planes we must keep v/n and v/(n’)* fixed. 

To see this, we will trace the scattering amplitude T(q, n’, t, ML) with 

fixed v/n and v/ (n’)” around the contour shown in Fig. 5 

Between a and b 

Between b and c 

Between c and d 

Between d and e 

T (n+ i ei, n- i e2, t, v + iE3) 
i0 

T (qe itJ , nei(2n-8), t,v e ) 0<8 < 1~ 

T (-n+ i cl, -n-ie2, t, -Y + ie3) 

T (-n-iei, -n+ ie2, t, -Y -i e3) 
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Between e and f T he 
i0 

I ve 
i(2rr-0) t veie 

9 I ) lT<e<2a 

Between f and a T (q-iel, t)+ iE2, t, Y -ie3) 

where rl, v are taken to be real and positive. 

The Cauchy’s theorem 

(6) 
6 

can be used to obtain the sum rule. 

To relate the integrand to physical quantities we note that 

-l-Q-i 6, ~tih,t,+ih) 

= T(')1tibf, 7 +ikr) t, v-~% 1 - 
(7) 

This will be proven in the Appendix, 

Using Eqs. (3)and (7), we obtain 

-WI ti6a) 7-i& 1 t, g+ih ) - TQ-it,, perI v-ih) 
3 v '10 

770 

= 21 (~$d& (a+ b 4 *+ x) 
t <o 

(8) 
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I Ttp,, 7 *it, t, v-h) - T(ft;t,, T-;&~, t, vt;tJ 1 V<O 

(9) 

The right hand side of Eq. (9) can be seen as follows: v < 0, r) < 0, t < 0 

implies that p; pb < 0, p;q > 0 and (pa- pg)2 > 0. In the rest frame 

of a, p: < 0, q” > 0. Therefore the discontinuity of the amplitude is 

proportional to the cross section for the inclusive reaction a +b + c + X 

or equivalently a + b - c + X. In order to evaluate the contribution from 

the circular part of the contour, let us state precisely the Regge behavior 

of the amplitude. In the fragmentation region, we have 

db 
dzi? - 

t, $ j&d 

(10) 

where the trajectory k is shown in Fig. 6 and g (2 k w”’ 
t) is the Regge 

residue function. We must find the form of the amplitude whose discontinuity 

matches Eq. (10). 
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T($, $p t, y) yx u . 
J ‘( P ($p 4-4 

&L: gw [$, g* ) 4) (xc* e-i=dKc4’) y4k4 (11) 
K /%A Rd&> . 

satisfies this condition. To obtain this form, in addition to the analyticity 

assumption stated earlier, we require that the amplitude satisfies the 
. . 

conditions for the Phragmen-Lindeloff theorem. 

Eqs. (6), (8). (9)~. (11) gives our result 

3. 
v PI+’ ,t;-% (arb-? C+)c) dMc 

- (-,)” J “’ ,,“+‘,-k& (3’ b-+ Z+ xl AH= 
c 

IC R 4&‘&* I 

(13) 

III APPLICATIONS 

The phenomenological implication of the fixed M2/s, t sum rule 

should be quite interesting. Let us make a duality assumption. That is, 

suppose that the Regge expansion, Eq. (iO), with only one or two terms 

will describe the v dependence of the inclusive cross section. In the 
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resonance region, the Regge form is supposed to be good in the average 

sense. Then the sum rule should work with small vO. Say large enough 

to include the well established resonances. But since v/n is fixed, 

missing mass data required for the sum rule will come from low energy 

experiments. For example, take a = c = Al+, b = p. Then X will contain 

baryon resonances. The missing mass spectrum is smooth when 

M22 6 GeV2. Therefore, take 
2 

vO = 8 GeV and for example take ‘8 

q/v = 2. Then for the left hand side of Eq. (13), only inclusive reaction 

2 
cross sections taken at 2 GeV < s s 14 GeV 

2 
is necessary. The Regge 

residue function gk (v/n, t) thus obtained can then be used to predict 

cross sections which will be taken at NAL or ISR. 

The sum rule can be used to discuss the relation between triple 

and single Regge expansions. Since physics is smooth, we expect the 

triple-Regge and single -Regge regions to be connected smoothly. That is 

y&&t) = 2 Gij* It) &$+' +dP) 

ij 

(14) 

Eq. (14) is not useful if we have to sum over a large number of trajectories. 

But we rewrite the sum rule 
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J 
v, 

d* 
3. 

yz dz$ ~Cscb-rc*x)dk - sda 
y &dW 

(Z+ b-=+ X)4&i= 
-t -t 

= r (I-X) 
di It)* dj(t~ +?. 

Qfl=~ 
dp + \ 

;j” 
o(,w +I 

(15) 

Andy note that on the left hand we integrate over various resonance 

contributions in ab and Fib channels. So again we expect very few 

trajectories i and j are sufficient on the right hand side. If this expectation 

is valid, we are lead to 

glr. (~, t> ;;; r 
f UJ i,$ 

Gcju (~> ~~~)~(~’ ’ Oci~’ 

(16) 

This is varified experimentally. Only two triple-Regge terms GpPf and 

GffP 
were sufficient to describe the data at s/M2 as small as 4. On the 

basis of Eq. (i6) it will be interesting to analyze the data for the inclusive 

cross section in the fragmentation region in terms of the triple-Regge 

formula. 
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IV. SUMMARY 

We have derived a fixed M2/s, t sum rule, Eq. (13). The major 

assumption is the analyticity of the scattering amplitude stated in 

footnote 6. This assumption, at least in a $ 
3 

theory, may not be valid. 

Among many things, complex singularity may be present. If the sum 

rule works, then nature chooses the discontinuity across such singularities 

to be weak. Also, if the sum rule works, this is probably the strongest 

test of the generalized.unitarity. For now we have accepted the stated 

assumptions to be true and we have discussed some applications of the 

sum rule. There is a possibility that only low energy missing mass data 

is required to obtain the residue function in the fragmentation region, 

gk(M2/s, t). Finally we note that the resonance search experiments 

using the Jacobian peak method measures s d+M2 (M2/s, t). Such 

experiments are already underway at NAL and the sum rule can soon be 

tested. 
7 
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APPENDM 

In this appendix we prove Eq. (7). Let us start from S matrix 

S( 1 *i&j l+iCr, t, u -:S,) 

= iyz p j ~~~py~Yiii~ jfxjqr;f+ \~(~~&f~~))Ip.fid+ 

=i(7.a~'d~~l-*lt~-*-~~-~+~)~~ (2$(~%&)(~-ti) 

* z [ s3(fb+P.+ 6 Pi) ~~~p~nctI~~+(o)l~~(7114;c~)~f.Pb~~> 
n ?,‘- ~40” Pi- q: + ib3 

(18) 

$ S3( pa+ pb- q - &) q: f; &act 1 +;(d I*> <*I 4s I p- b Ii > 

ph"- pg.- p;+ 'i.+h 3 

In Ref. 1, we have shown that if we define a function F(o,t, v) such that 

w +i$, 4, Wt i6j) 2 

(19) 

than 
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Using Eqs~(l9) and (20), we obtain the T matrix: 

TtT+;et, 7-i tz, t, w-;~J 

@qf (y&q) (&?) 

k 
zl h 

PC- IT,"- PC- T:+ies 

(pp' $ll, 1 +plI w-d ?+I -f I9%) I p& 6 ) 

1 (21) 

T(745, v+itz, t, U-l5 
1 

= LE&E; 

r- 
w2 rccc * (my Pj’“1’c c&4 

XL z’(p*4P,+{-P,) <~p~,t)~~(.)jr~)<n;.l4ldIr~P~~~) 

h I 
PC - f-y - p,” - 7: -+ i 63 

+ f(fa+p,-pp,) ~p’p~~tli,(.)i~~><d~~IQ)cd)IP~P~~) 

P,“-pl’-Pc’+%* i&, 
I 

(22) 
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But the time reversal invariance implies that 

em4 +p\ ppb;“? = cp pmt 1 ++(D, 1 et IA) 

therefore 

T(l-i&r, T+;ez, t, J-i&) 

Czd f p"Y Cp"-m') 

(23) 

2 
I 

i3(p + P,+$- PM) (p,polq Qtlo,pwt)~x~* 1 dcLO~ I P&G) 
n 

p,“-p,o-P,“-q:+ i&3,’ (24) 

+ &ra+pb-l.+) +f”I”tbte I~~%~+&-) t pr. f& 1 
P~-p,‘~P~+?afi6~ ’ 

Composing Eq. (24) and (21) in the forward direction where 

pa = p;, pb = p;, , q = q’, Eq. (11) holds. 
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FIGURE CAPTIONS 

Fig. 1 a+b-c+X 

Fig. 2 a = b + c + X in the triple-Regge region, 

Fig. 3 Theamplitudefora +b+c-a+b-c. 

The absorptive part of M2 and M: channels. The 

Fig. 5. 

Fig. 6. 

discontinuities across the right and left hand cuts on 

the v plane are the absorptive part of these two channels 

respectively. 

The singularities of the amplitude for a+ b + c - a + b + 6 

in the variable v while v/n , V/(T)*)*, t are fixed. Also 

shown is the contour used to derive the fixed M2/s, t 

sum rule. 

Regge diagram in the fragmentation region of a. 
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